Assessing Current and Projected Suitable Habitats for the Invasive Species Tree-of-Heaven Along the Appalachian Trail

> ASPRS 2014 – 3/26/14 John Clark, University of Rhode Island

Ecoregion Provinces within the A.T. HUC-10 Shell

M211 22

The Appalachian Trail

- Foot path spanning over 2,175 miles from Springer Mountain, GA to Mount Katahdin, ME
- Diverse ecosystems, rare species, and important services
- Latitudinal and altitudinal gradient of conditions

Objectives Developing a prototype application for the DSS

- Relate field-based observations of the distribution of *Ailanthus* to a set of ecogeographical variables.
- 2. Map the current distribution of suitable habitats and identify high-risk regions along the A.T.
- 3. Integrate projected precipitation and temperature data to simulate potential shifts in the distribution of *Ailanthus* habitats.

Invasive Species: Ailanthus altissima

Tree of Heaven, Chinese Sumac

- Native to China
 - Introduced to urban areas
 - Tolerates stress
 - Wide range of conditions
- Problematic invasive in N. America
 - Large # airborne seeds
 - Rapid growth
 - Allelopathic
 - Root and stump shoot regeneration
 - Disrupts native communities

The A.T. Shell: 10-digit Hydrologic Unit Code (HUC-10) Watersheds Adjacent to the Trail Centerline

The A.T. Shell

- Open and complex system need to define ecologically relevant extent
- HUC-10 level watershed delineations intersecting the A.T. centerline

FIA Plot Locations and Ailanthus Presences

A.T. Centerline HUC-10 Shell Ailanthus Presence FIA Plot Location

600

Kilometers

6

450

300

FIA Data

- Large database of *in situ* forest measurements collected by the Forest Service
- Plot locations swapped and fuzzed to protect confidentiality
- *Ailanthus* observed at 136 plots within the A.T. Shell

Maximum Entropy Modeling (Maxent)

- Presence-only modeling
 - Invasive population out of equilibrium within landscape, absences do not indicate poor conditions
- Machine learning method
 - Maximum entropy distribution = least constrained
 - Generates 'features' based on distribution of environmental variables across presence points
 - Many iterations, balancing gain against regularization to prevent overfitting
- Widely used
 - Ranked high in comparative studies
 - Large body of literature
 - Applied to diverse species and regions
 - Stable package and active user group

Climate Data

- From NASA's Terrestrial Observation and Prediction System (TOPS)
 - AR5 CMIP5 RCP6.0
- Generate bioclimatic variables
 - Used R package 'dismo'
 - Suite of 19 biologically meaningful climate variables
 - Annual trends
 - Seasonality
 - Extreme or limiting environmental factors
- Baseline (1950-2005) and projected (2090-2095) data

Ancillary Data

- Topographic (NED)
 - Elevation, slope, aspect...
- Landcover (NLCDo6)
 - Developed areas, agriculture, canopy cover...
- Soil Moisture (STATSGO)

Model Evaluation

- Performance: 10-fold cross validation on test area under curve of receiver operating characteristics
- Complexity: sample size adjusted Akaike information criteria (AIC_c)
 - Simplicity especially desirable when transferring (projecting) to new conditions
- Consistency: ecologically significant variables selected and resulting distribution in agreement with existing knowledge

Model Evaluation Metrics

model	climate variables	topographic variables	landcover variables	log- likelihood	parameters	AICc score	mean test AUC	AUC SD	
4bio_4topo	4	4	0	- 1751.24	56.8	3707.533	0.85	0.034	
2bio_1topo	2	1	0	- 1796.72	40.9	3713.173	0.812	0.035	
4bioalt_4topo_2lc	4	4	2	- 1749.24	61.8	3733.685	0.847	0.034	
5bioalt_Stopo	5	5	0	- 1747.56	68.2	3777.135	0.848	0.045	
10bioalt_6topo	10	6	0	- 1735.15	72.2	3788.426	0.855	0.047	
5bioalt_4topo	5	4	0	- 1747.74	69.8	3794.235	0.849	0.044	
4bioalt_3topo	4	3	0	- 1752.98	67.8	3796.161	0.85	0.041	
5bioalt2_3topo	5	3	0	- 1750.84	69.4	3804.34	0.852	0.04	
6bioalt_6topo	6	6	0	- 1743.5	73.1	3817.243	0.848	0.046	
allbio_alltopo	19	10	0	- 1732.14	76.2	3821.316	0.847	0.039	
5bio_5topo	5	5	0	- 1751.37	74.4	3862.39	0.848	0.045	
10bio_5topo	10	5	0	- 1739.94	79.4	3886.28	0.851	0.048	
4bio_5topo	4	5	0	- 1752.8	76.9	3886.495	0.842	0.046	
10bio_5topo_4lc	10	5	4	- 1734.39	88.3	3997.353	0.844	0.046	
allbio_alltopo_alllc	19	10	7 VMware	Fusion 52	92.5	4079.972	0.844	0.049	

Low:0 600 Kilometers

A.T. Centerline HUC-10 Shell Ailanthus Presence

High : 25.8899

0

	suitable area (km²)							mean elevation (m)				mean latitude		
province	total area	current	%	projected	%	change	%	current	projected	change	%	current	projected	change (km)
211	4478	1283	28.7	2372	53.0	1089	84.8	289	414	125	43.3	41.26	41.41	17
221	20 013	17 211	86.0	19 802	98.9	2591	15.1	195	201	6	3.0	40.31	40.63	36
231	2831	1577	55.7	2824	99.7	1247	79.1	267	348	81	30.1	37.17	36.02	- 128
M211	29 746	624	2.1	14 969	50.3	14 345	2298.3	340	436	96	28.2	42.49	43.46	108
M221	51 004	39 348	77.1	49 098	96.3	9750	24.8	491	561	70	14.2	38.23	37.68	-61
A.T. Shell	10 8072	60 044	55.6	89 066	82.4	29 022	48.3	391	449	59	15.1	38.91	39.35	49

Discussion

- Simple models with clear ecological interpretation performed strongest
- Projecting to future conditions precludes use of landcover/veg variables
 - performed poorly at broad scale of model regardless
- FIA plot location fuzzing limits examination of finescale site characteristics
- Independent test data needed to further evaluate performance

Conclusions

- Combining *Ailanthus* presences from FIA and Maxent modeling techniques successfully estimated current and projected suitable habitats
- Strong indication potential extent of *Ailanthus* habitats likely to increase as climate changes
- Introductions will increase invasive pressure on sensitive high elevation and northern ecosystems

The Environmental Data Center, Laboratory for Terrestrial Remote Sensing, and the NRS community

Thank

You!

A.T. DSS Project Team: Rama Nemani², Fred Dieffenbach³, Ken Stolte⁴, Glenn Holcomb⁵, Matt Robinson⁶, Marcia McNiff⁵, Paul Mitchell⁷, Casey Reese⁶, Forrest Melton², Hirofumi Hashimoto², Sam Haitt², Brian Mitchell³, Geri Tierney⁸
2. NASA/Ames Research Center, 3. National Park Service/Northeast Temperate Network, 4. U.S. Forest Service, 5. U.S. Geological Survey, 6. National Park Service/Appalachian National Scenic Trail, 7. Appalachian Trail Conservancy, 8. SUNY

